Deep Reinforcement Learning Notes (DS)

Dongda Li
d1i160@syr.edu

Contents

B 0 d|
2 1. Introduction|
3 2. MDPi

[@ 3. Planning by Dynamic Programming]

[6.0.1 GLIE Monte-Carlo Controll.
16.0.2 Importance Sampling|. o oL,
16.0.3 Q-learning|

(7 6. Value Function Approximation|

[Z1 Introduction|
.....................................
[7.1.2° Value Function Approximation|.
[7.1.3 Approximator Considerations|
[/.2 Incremental Methods|
[7.2.1 Basic SGD for Value Function Approximation|
[7/.2.2 Table LookupasaSpecial Casel
[7.2.3 Incremental Prediction Algorithms|.

. Policy Gradient Methods

1 Intr 101
|8.1.1 Policy-based Reinforcement Learning|
8.1.2 Policy Gradient|
8.1.3 Policy Gradient Theorem|.

onte-Carlo Policy Gradient (REINFORCE)(.

o e N e N N BN | SN O L W

O O o0 o0 oo X

BT Tdeal . . - . o oot e e e

2 Action-Value Actor-Criticl Lo
18.3.3 Reducing Variance usinga Baseline|
18.3.4 Deterministic Policy Gradient (Oft-policy)|

[0 8. Integrating Learning and Planning]|

9.1 Introduction|
9.2 Planning withaModel|
9.2.1 Sample-based Planning{.

9.3 Integrated Architectures|. L
9.4 Simulation-Based Search| oL
4.1 imulation-B rchProcessl

9.4.2 Sample Monte-Carlo Search|
9.4.3 Monte-Carlo Tree Search MCTS)|.

(10 9. Exploration and Exploitation|
110.1 Waysto Explore|.

110.2.1 Optimism 1n the Face of Uncertainty: Upper Confidence Bounds (UCB)| . .

110.3 Solving Information State Space Bandits —MDP|.
[10.4 MDP Explorationwith UCB|

11
11
12
12
12
12
12
12
13

1 Background

I started learning Reinforcement Learning in 2018, and I first learned it from the book Deep Re-
inforcement Learning Hands-On by Maxim Lapan. That book taught me some high level con-
cepts of Reinforcement Learning and how to implement it using PyTorch step by step. How-
ever, when I dug deeper into Reinforcement Learning, I found that the high level intuition was
not enough. So I read Reinforcement Learning: An Introduction by S. G. (available at http:
//incompleteideas.net/book/bookdraft2017nov5. pdf), and by following the course Rein-
forcement Learning by David Silver (see https://www.youtube.com/watch?v=2pWv7G0vuf0),
I gained a deeper understanding of RL. For the code implementations from the book and course, refer
to the GitHub repository athttps://github.com/dennybritz/reinforcement-learning,

Here are some of my notes taken while attending the course. For some concepts and ideas that are
hard to understand, I add some of my own explanations and intuitions. I omit some simpler concepts
in these notes; hopefully, this note will also help you start your RL tour.

2 1. Introduction

RL Features
* Reward signal
* Feedback delay
» Sequence is not i.i.d.

 Actions affect subsequent data

Why Using Discounted Reward?
* Mathematically convenient.
* Avoids infinite returns in cyclic Markov processes.

* We are not very confident about our prediction of reward; perhaps we are only confident
about the near future steps.

* Humans show a preference for immediate reward.

¢ It is sometimes possible to use an undiscounted reward.

3 2. MDP

In an MDP, the reward is an action reward, not a state reward!
RZ :E[Rt+1 ‘ St = S,At = Cl]

The Bellman Optimality Equation is non-linear, so we solve it using iterative methods.

4 3. Planning by Dynamic Programming

Planning (when you clearly know the MDP model and try to find an optimal policy)

Prediction: Given an MDP and a policy, you output the value function (policy evaluation).
Control: Given an MDP, you output the optimal value function and optimal policy (solving the
MDP).

¢ Policy Evaluation.

¢ Policy Iteration:

— Policy Evaluation (run for k steps until convergence).
— Policy Improvement:

http://incompleteideas.net/book/bookdraft2017nov5.pdf
http://incompleteideas.net/book/bookdraft2017nov5.pdf
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://github.com/dennybritz/reinforcement-learning

If we iterate policy evaluation and improvement repeatedly, knowing the MDP, we
will eventually obtain the optimal policy (as proved). Thus, policy iteration solves
the MDP.

¢ Value Iteration:

1. Value update (one step of policy evaluation).
2. Policy improvement (one step greedy based on the updated value).

Iterating this also solves the MDP.

Asynchronous Dynamic Programming

* In-place dynamic programming (update the old value immediately with the new value, not
waiting for all states to update).

* Prioritized sweeping (based on the error in value iteration).

* Real-time dynamic programming (run the game in real-time).

5 4. Model-free Prediction

Model-free prediction is accomplished by sampling.

Monte-Carlo Learning

Every update in Monte-Carlo learning must span a full episode.

* First-Visit Monte-Carlo Policy Evaluation:
Run the agent following the policy; the first time that state s is visited in an episode,
perform the following calculations:

N(s)« N(s)+1, S(s)« S(s)+Gy, V(s)=

and V(s) — vy as N(s) — oo.

* Every-Visit Monte-Carlo Policy Evaluation:
Run the agent following the policy, and each time state s is visited in an episode (even if in
a loop), update.

Incremental Mean:

1k
TR

)
j=1

%(m + (B — 1) pp— 1)

= Wk 71+%(xk_ﬂk 1)

Thus, by the incremental mean:
1
N(St) = N(S;) +1, V(Si) < V(Si) + F(Gt = V(5:))-
t

In non-stationary problems, it may be useful to track a running mean, i.e.,

V(St) = V(S¢) + a(Gr = V(St)).

Temporal-Difference (TD) Learning

TD learning uses incomplete episodes and bootstraps the reward:
V(S) <= V(i) + (G = V(St))

and
V(St) < V(St) + Q(Rt+1 + ’YV(St+1) — V(St))
The TD target is
Gt = Rip1+ 7V (Si+1) (TD(0)).
The TD error is

Oy = Ry + ’YV(StJ,_l) — V(St)

TD()\) — Balancing between MC and TD

Let the TD target look n steps into the future. If n is very large and the episode is terminal, then it
is equivalent to Monte-Carlo.

ng) = Ry + YR+ 49" Repn + 7"V (Setn),
V(Se) V(St) + a(G — V(Sy).

Averaging n-step returns produces forward TD(\):
Gy = (1= alG,
n=1

V(Si) = V(S) + a(G} = V(SY).
Eligibility Traces combine frequency and recency heuristics:
Ey(s) =0,
Ei(s) =YAE;_1(s) + 1(S;, = s).
Backward TD()\) (using eligibility traces):

0t = Rey1 + YV (Se41) — V(Se),
V(s) « V(s) + ad: E(s).

If updates are done offline (i.e., in an episode using the old value), then the sum of forward TD(\)
equals the sum of backward TD(\):

T
ZO((S,& Et(S) = ZO&(G? — V(St))l(St = 8).
t=1

t=1
6 5. Model-free Control

An e-greedy policy is used to add exploration to ensure that the policy both improves and explores
the environment.

On-policy Monte-Carlo Control
For every episode:

1. Policy Evaluation: Perform Monte-Carlo policy evaluation to estimate @ ~ ¢;.
2. Policy Improvement: Use an e-greedy policy improvement based on Q(s, a).

Greedy in the limit with infinite exploration (GLIE) will eventually find the optimal solution.

6.0.1 GLIE Monte-Carlo Control

For the kth episode, set € < 1/k. As k increases, € reduces to zero, and the optimal policy is
obtained.

On-policy TD Learning
Sarsa:
QS 4) < Q(S, 4) +a(R+7Q(S', 4) — Q(S. 4))
On-Policy Sarsa:
For every time-step:
¢ Policy Evaluation: Use Sarsa to estimate () ~ ¢.
* Policy Improvement: Apply e-greedy policy improvement based on Q(s, a).
Forward n-step Sarsa leads to Sarsa()), analogous to TD()).
Eligibility Traces:
Ey(s,a) =0,
Ey(s,a) = YAEi_1(s,a) + 1(Sy = s, Ay = a).
Backward Sarsa()) updates, for all (s, a) at each time-step:

0t = Rip1 +vQ(S41, Ary1) — Q(St, Ay),
Q(s,a) < Q(s,a) + ad; E(s,a).

Intuition: The current state-action pair’s reward and value influence all other state-action pairs, with
more influence on those that are more recent and frequent. Using only one-step Sarsa would update
only one state-action pair per reward, making learning slower.

Off-policy Learning

6.0.2 Importance Sampling

For off-policy TD, the update is:

Vst) < V(st) +a (m (Rt+1 + 9V (S¢s1) — V(St)))

6.0.3 Q-learning

In Q-learning, the next action is chosen using the behavior policy A¢11 ~ (- | St), but we update
using a target policy A" ~ (- | S¢):

QS,4) < Q(S, 4) + a(Rivt +79Q(Si11, 4) - Q(S, 4))

No matter what action is actually taken next, we update () according to our target policy. Thus, the
Q-values converge to those of the target policy 7.

Off-policy Control with Q-learning: The target policy is greedy with respect to Q(s, a):
7(Sp+1) = argmax Q(Si41,a’)

The behavior policy i can be, for example, e-greedy with respect to Q(s, a) or even a completely
random policy; it does not matter because the update is off-policy.

The Q-learning update becomes:

Q(S,4) ¢ QS A) + o Reyr +7maxQ(S', ') — Q(S, 4))

and Q-learning converges to the optimal action-value function Q(s, a) — ¢« (s, a).

Note: Q-learning can be used both off-policy and on-policy. For on-policy, if you use an e-greedy
policy update, Sarsa is a good on-policy method; using Q-learning is also acceptable since e-greedy
is similar to the max-Q policy.

7 6. Value Function Approximation

Before this lecture, we discussed tabular learning (maintaining a Q-table or value table).

7.1 Introduction

7.1.1 Why?

 The state space is large.
 The state space can be continuous.
7.1.2 Value Function Approximation
We approximate the value function and action-value function as:
(s, W) = vz (8),
4(s,a,w) = gz (s,a).
7.1.3 Approximator Considerations

* Non-stationarity: State values change as the policy changes.
* Non-i.i.d.: Samples are generated according to the policy.

7.2 Incremental Methods

7.2.1 Basic SGD for Value Function Approximation
Using stochastic gradient descent (SGD) with feature vectors:

x1(8)
x(s)=1|
Zn(9)

Linear value function approximation:
n
o(s,w) =x(s)"'w = ij(s) wj,
j=1

J(w)=FE, [(vﬂ(s) — B(s, W))Q} :
The gradient update is:
AW = (v (s) — 0(s,W)) Vwd(s, W) = a(vx(s) — d(s, w))x(s).
7.2.2 Table Lookup as a Special Case

A table lookup is a special case of linear approximation where the feature vector is:
1(s = s1)
x(s) = ,
1(s = sp)

and then

7.2.3 Incremental Prediction Algorithms
Supervision:
* For Monte-Carlo (MC), the target is the return G:
Aw = a(Gy — (Sy, W) Vwd(Sy, w).
* For TD(0), the target is the TD target R; 11 + y0(S¢+1, W):
Aw = a(RtH +y0(Si1, W) — 9(Sh, W))wa;(St, w).

* Note: The TD target contains ¥(S¢+1, W), which depends on w, but we do not differentiate
through it (we treat it as a constant at each time step).

* For TD(\), the target is the A-return Gf‘:
Aw = a(G} — 9(S;, w)) Vi d(S;, w).
In the backward view of linear TD(\):

(St = Rt+1 + 7@(5t+1,w) — @(St,W),
Et = ")/)\Et_l + X(St)7
Aw = 04525 Et.

8 7. Policy Gradient Methods

8.1 Introduction
8.1.1 Policy-based Reinforcement Learning
We directly parameterize the policy:
mo(s,a) = Pla| s,0).
Advantages:

* Better convergence properties.
* Effective in high-dimensional or continuous action spaces.

* Can learn stochastic policies.
Disadvantages:

» Convergence to a local rather than global optimum.

» Evaluating a policy is typically inefficient and high variance.
8.1.2 Policy Gradient

Let J(6) be the policy objective function. To find a local maximum of the policy objective function,
we perform:

A =aVeJ(0),
where
aJ(0)
96,
VoJ(0) = :
dJ(0)
90,

Score Function Trick:
Von(s,a) = mg(s,a) Vglogma(s,a).

The score function is Vg log mo (s, a).

Policy Examples:

* Softmax policy for discrete actions.
* Gaussian policy for continuous action spaces.

For one-step MDPs, applying the score function trick:

J(O)=E,,[r] = Zd(s) Z 7o(8,a) Rs,as

seS acA
VJ(0) = d(s) Y mo(s,a) Vologm(s,a) R
s€eS acA

=E,,[Vologmy(s,a)r].
8.1.3 Policy Gradient Theorem
The policy gradient is given by:
VoJ(0) =Er,[Vologm(s,a) Q™ (s,a)].
8.2 Monte-Carlo Policy Gradient (REINFORCE)
Using the return v; as an unbiased sample of Q™ (s, a;):

Ay = aVglogmo(se, ar) ve, Withv, = Gy = 7441 +yrege +72ris + - .

Pseudo-code for REINFORCE:
1: function REINFORCE

2: Initialize € arbitrarily

3 for each episode {s1,a1,72,...,87—1,ar—1, Rr} ~ 75 do
4 fort=1toT — 1do

5: 0+ 0+ aVglogm(st, ar)vy

6 end for

7 end for

8: return 0

9: end function

REINFORCE suffers from a high variance problem since v, is estimated by sampling.

8.3 Actor-Critic Policy Gradient
8.3.1 Idea
Use a critic to estimate the action-value function:
Qu(s,a) = Q™ (s, a).
The actor-critic algorithm approximates the policy gradient as:
Vo J(0) = Er, [Vologmy(s, a) Qu(s, a)],
and the update becomes:
AO = aVyglogmy(s,a) Qu(s,a).
8.3.2 Action-Value Actor-Critic

Using a linear function approximator Q,, (s, a) = ¢(s,a)’w:

* The critic updates w using TD(0).
* The actor updates # using the policy gradient.

Pseudo-code for QAC:

Algorithm 1 QAC

1: procedure QAC

2: Initialize state s and policy parameters 6
3 Sample action a ~ my(s)

4 for each step do

5: Sample reward r = R(s, a)

6.

7

8

Sample transition s’ ~ P(s' | s,a)
Sample action a’ ~ 7y(s’)
: 5 =1 +1Qu(s ') - Qu(s,a)
9: 0 =0+ aVglogmy(s,a)Qu(s,a)

10: w=w+ BY(s,a)
11: s+ sia+a

12: end for
13: end procedure

Observation: Value-based learning is a special case of actor-critic, since the greedy policy derived
from @ (when the policy gradient step size is very large) will assign probability nearly 1 to the action
with maximum Q.

8.3.3 Reducing Variance using a Baseline

Subtracting a baseline function B(s) from the policy gradient can reduce variance without changing
its expectation:

Er, [Vologms(s,a)B(s)] = > d™(s) Y Voms(s,a)B(s)

sES

=Y "d™(s)B(s)Vo Y _ mo(s.a)

seES acA
=Y d™(s)B(s)Ve(1)
seS
=0.

A good baseline is the state value function: B(s) = V™ (s). Then, we can define the advantage
function:

A" (s,a) = Q™ (s,a) — V™ (s)
and the policy gradient becomes:

VGJ(G) = Eﬂ'e [VG IOg o (87 a) AT (S, a)} .
Estimating the Advantage Function:

* Use two networks to estimate () and V' separately (more complex).
* More commonly, use bootstrapping via the TD error:
8™ =+ V™ (s) — V7™ (s),
which is an unbiased estimate of the advantage:
E,, [5”9 | s, a] =Q™(s,a) — V™ (s) = A™(s,a).

Thus,
VoJ(0) =Ex, [Vologmo(s,a) ™.

In practice, an approximate TD error for one step is:

8y =1+ YV (s') — Vi (s).

For the critic, we can use methods such as MC, TD(0), TD()\), or TD(\) with eligibility traces.

10

Examples:

* MC Policy Gradient:
A0 = a (v — Viy(st)) Vo log mo(st, ar)

« TD(0):
A = a (r+vVy(si41) — Vo(se)) Vo logmo (s, ar)

e TD()\):
A = « (v;\ + Vo (st41) — Vv(st)) Vo log mo (s, ar)

* TD(\) with Eligibility Traces (backward view):
0t = i1 + YV (se41) — Vi(se),

ery1 = Aeg + Vologmy(s,a),
AO = aey.

For continuous action spaces, Gaussian policies are often used, but due to the noise inherent in
Gaussian distributions, it is sometimes preferable to use a deterministic policy (by selecting the
mean) to reduce noise and facilitate convergence. This leads to the Deterministic Policy Gradient
(DPG) algorithm.

8.3.4 Deterministic Policy Gradient (Off-policy)

For a deterministic policy:
ar = p(st | 0%),

with a Q-network parameterized by A% and the state distribution under the behavior policy p®, the
critic loss is:

L(HQ) =]EStNPﬁ,atN,@;TtNE [(Q(St’ at | QQ) - yt)2:|)
yr = 1(st,ar) + 7 Q(se41, u(se41) | 09).
The actor’s objective is:
J(0%) = Borpo [Q(s. s | 0) | 69)]
VouJ ~ E,_ s [VQQ(S, 0|09, Vousu(s | 9/1)]

To improve training stability, target networks are used for both the critic and actor, updated by a soft
update:

09 — 769+ (1—7)09,
Or — TO" + (1 —T1)0"
with 7 set very small (e.g., 7 = 0.001).

Additionally, noise is added to the deterministic action during exploration:
W (se) = plse | 0F) + N,

where N, is noise (e.g., Ornstein-Uhlenbeck noise).

9 8. Integrating Learning and Planning

9.1 Introduction
Model-free RL:

* No model.
 Learn the value function (and/or policy) directly from experience.

Model-based RL:

11

* Learn a model from experience.
* Plan the value function (and/or policy) using the model.
We define a model as M = (P,, R,), where
Sty1 ~ Pn(5t+1 | St,At), Rt = Rn(Rt—i-l \ St,At)~
Model learning from experience {S1, A1, Ra, ..., St} is performed via supervised learning:

SlaAl — R27 527
Sa, Ay — R3,S3,

Sr—1,Ar—1 — Rr, St.
Here, learning s,a — r is a regression problem, and learning s,a — s’ is a density estimation

problem.

9.2 Planning with a Model

9.2.1 Sample-based Planning

1. Sample experience from the model.

2. Apply model-free RL methods to the samples, such as Monte-Carlo control, Sarsa, or Q-
learning.

The performance of model-based RL is limited to the optimal policy for the approximate MDP.

9.3 Integrated Architectures
Integrating learning and planning is exemplified by the Dyna framework:

* Learn a model from real experience.

* Learn and plan the value function (and/or policy) using both real and simulated experience.

9.4 Simulation-Based Search

* Forward Search: Select the best action by lookahead.
¢ Build a search tree with the current state s; at the root.
* Solve the sub-MDP starting from the current state.

94.1 Simulation-Based Search Process

1. Simulate episodes of experience from the current state using the model.

2. Apply model-free RL to the simulated episodes (e.g., Monte-Carlo search, TD search).

9.4.2 Sample Monte-Carlo Search

* Given a model M,, and a simulation policy 7:
1. For each action a € A, simulate K episodes from the current (real) state s;:

k k k kK
{8650, R{' 1,7 1, Af 1y, ST ey ~ My, T

2. Evaluate the action by computing the mean return:

K
1 P
Q(Stva’) = XZGt — qﬂ(staa)'
k=1
¢ Select the action with maximum estimated value:
a; = argmax Q(s¢, a).

acA

12

9.4.3 Monte-Carlo Tree Search (MCTS)

* Given a model M,,, simulate K episodes from the current state s; using the simulation
policy 7:
k pk k k kK
{80, AV, R, Sias Afas -5 ST =1 ~ Mo,
* Build a search tree of visited states and actions.

* Evaluate states Q(s, a) by the mean return of episodes passing through s, a:

Q(st,a) = m ZZl(su,Au = (s,a)) Gy LS qr(8t, Q).

k=1 u=t
e After search is finished, select the real action with maximum value:

a; = argmax Q(sq, a).
acA

Each simulation consists of two phases:

* Tree Policy (improves): Pick actions to maximize Q(s, a).

* Default Policy (fixed): Pick actions randomly.
Note: Q-values are updated on the entire subtree, not only at the current state. After each search
episode, the policy is improved based on the updated Q-values and a new search begins. With

progress, the search exploits promising directions while still exploring others (e.g., via MCTS with
Upper Confidence Bounds as in AlphaZero).

Temporal-Difference Search: For example, update using Sarsa:

AQ(S,4) = a(R +7Q(S', A4) - Q(S, 4)).
One may also use function approximation for simulated Q-values.
Dyna-2:

* Long-term memory (real experience): Use TD learning.

* Short-term memory (working memory): Use simulated experience with TD search &
TD learning.

10 9. Exploration and Exploitation

10.1 Ways to Explore

¢ Random Exploration:

— Use Gaussian noise in continuous action spaces.
— e-greedy: choose a random action with probability e.
— Softmax: select an action based on the softmax of the policy distribution.

* Optimism in the Face of Uncertainty: Prefer to explore state/actions with highest uncer-
tainty.

— Optimistic Initialization.
— UCB (Upper Confidence Bounds).
— Thompson Sampling.

* Information State Space:

— Gittins indices.
— Bayes-adaptive MDPs.

State-action exploration versus parameter exploration.

13

10.2 Multi-arm Bandit

Total Regret:
Li=E|Y (V*- Q(aT))]
T=1
= E[N:(a)](V* — Q(a))
acA
= E[N:(a)] Aa
acA

Optimistic Initialization:
* Initialize Q(a) to a high value.
* Then act greedily.
* This leads to linear regret.
e-greedy:

* Also leads to linear regret.

* Decaying e-greedy (with properly tuned decay) can yield sub-linear regret (often logarith-
mic in t).

The regret lower bound (logarithmic bound):
Aa
lim L; > logt Z —_—.
oo a:Aa>0 KL (R H R *)
10.2.1 Optimism in the Face of Uncertainty: Upper Confidence Bounds (UCB)
* Estimate an upper confidence U;(a) for each action value such that with high probability,

Q(a) < Qu(a) + Us(a).
* The upper confidence depends on the number of times N (s) has been sampled.
 Select the action maximizing the upper confidence bound:

A; = argmax [Q(st,a) + Ut(a)]
acA

Theorem (Hoeffding’s Inequality):

Let x1,...,2; be ii.d. random variables in [0, 1], and let X; = % 23:1 x,. Then,
]P’[]E[X] > X, + u} < e,
Applying Hoeffding’s inequality to the rewards of the bandit for a given action a:
p[@(@ > Q(a) + Ut(a)} < e 2N(@UH@)?,

If we set a probability p such that this holds:
672Nt(a)Ut(a)2 =p,

—logp
U@ =1/ 3N, (a)°

2logt
Ni(a)®

then solving for U (a) gives:

If we let p = ¢t~*, then:

Ut(a) =

This ensures we select the optimal action as ¢ — oo.

14

UCBI1 Algorithm:

2logt
A =a a ,a) + 4/ .
t r%éﬁ X [Q(St CL) Nt(a)]

The UCB algorithm achieves logarithmic asymptotic total regret:

thj& Ly < 8logt Z Aa.
a:A>0

Bayesian Bandits: Probability matching (Thompson Sampling) is optimal for the one-armed ban-
dit, though it may not be as effective in MDPs.

10.3 Solving Information State Space Bandits — MDP
Define an MDP on the information state space.
10.4 MDP Exploration with UCB
In an MDP, UCB can be generalized as:
Ay = argmax |Q(s¢, a) + Up(s,a) |-

acA

Another algorithm is the R-Max algorithm.

15

	Background
	1. Introduction
	2. MDP
	3. Planning by Dynamic Programming
	4. Model-free Prediction
	5. Model-free Control
	GLIE Monte-Carlo Control
	Importance Sampling
	Q-learning

	6. Value Function Approximation
	Introduction
	Why?
	Value Function Approximation
	Approximator Considerations

	Incremental Methods
	Basic SGD for Value Function Approximation
	Table Lookup as a Special Case
	Incremental Prediction Algorithms

	7. Policy Gradient Methods
	Introduction
	Policy-based Reinforcement Learning
	Policy Gradient
	Policy Gradient Theorem

	Monte-Carlo Policy Gradient (REINFORCE)
	Actor-Critic Policy Gradient
	Idea
	Action-Value Actor-Critic
	Reducing Variance using a Baseline
	Deterministic Policy Gradient (Off-policy)

	8. Integrating Learning and Planning
	Introduction
	Planning with a Model
	Sample-based Planning

	Integrated Architectures
	Simulation-Based Search
	Simulation-Based Search Process
	Sample Monte-Carlo Search
	Monte-Carlo Tree Search (MCTS)

	9. Exploration and Exploitation
	Ways to Explore
	Multi-arm Bandit
	Optimism in the Face of Uncertainty: Upper Confidence Bounds (UCB)

	Solving Information State Space Bandits — MDP
	MDP Exploration with UCB

