
Deep Reinforcement Learning Notes (DS)

Dongda Li
dli160@syr.edu

Contents

1 Background 3

2 1. Introduction 3

3 2. MDP 3

4 3. Planning by Dynamic Programming 3

5 4. Model-free Prediction 4

6 5. Model-free Control 5

6.0.1 GLIE Monte-Carlo Control . 5

6.0.2 Importance Sampling . 6

6.0.3 Q-learning . 6

7 6. Value Function Approximation 7

7.1 Introduction . 7

7.1.1 Why? . 7

7.1.2 Value Function Approximation . 7

7.1.3 Approximator Considerations . 7

7.2 Incremental Methods . 7

7.2.1 Basic SGD for Value Function Approximation 7

7.2.2 Table Lookup as a Special Case . 7

7.2.3 Incremental Prediction Algorithms . 8

8 7. Policy Gradient Methods 8

8.1 Introduction . 8

8.1.1 Policy-based Reinforcement Learning . 8

8.1.2 Policy Gradient . 8

8.1.3 Policy Gradient Theorem . 9

8.2 Monte-Carlo Policy Gradient (REINFORCE) . 9

8.3 Actor-Critic Policy Gradient . 9

8.3.1 Idea . 9

8.3.2 Action-Value Actor-Critic . 9

8.3.3 Reducing Variance using a Baseline . 10

8.3.4 Deterministic Policy Gradient (Off-policy) 11

9 8. Integrating Learning and Planning 11

9.1 Introduction . 11

9.2 Planning with a Model . 12

9.2.1 Sample-based Planning . 12

9.3 Integrated Architectures . 12

9.4 Simulation-Based Search . 12

9.4.1 Simulation-Based Search Process . 12

9.4.2 Sample Monte-Carlo Search . 12

9.4.3 Monte-Carlo Tree Search (MCTS) . 13

10 9. Exploration and Exploitation 13

10.1 Ways to Explore . 13

10.2 Multi-arm Bandit . 14

10.2.1 Optimism in the Face of Uncertainty: Upper Confidence Bounds (UCB) . . 14

10.3 Solving Information State Space Bandits — MDP 15

10.4 MDP Exploration with UCB . 15

2

1 Background

I started learning Reinforcement Learning in 2018, and I first learned it from the book Deep Re-
inforcement Learning Hands-On by Maxim Lapan. That book taught me some high level con-
cepts of Reinforcement Learning and how to implement it using PyTorch step by step. How-
ever, when I dug deeper into Reinforcement Learning, I found that the high level intuition was
not enough. So I read Reinforcement Learning: An Introduction by S. G. (available at http:
//incompleteideas.net/book/bookdraft2017nov5.pdf), and by following the course Rein-
forcement Learning by David Silver (see https://www.youtube.com/watch?v=2pWv7GOvuf0),
I gained a deeper understanding of RL. For the code implementations from the book and course, refer
to the GitHub repository at https://github.com/dennybritz/reinforcement-learning.

Here are some of my notes taken while attending the course. For some concepts and ideas that are
hard to understand, I add some of my own explanations and intuitions. I omit some simpler concepts
in these notes; hopefully, this note will also help you start your RL tour.

2 1. Introduction

RL Features

• Reward signal

• Feedback delay

• Sequence is not i.i.d.

• Actions affect subsequent data

Why Using Discounted Reward?

• Mathematically convenient.

• Avoids infinite returns in cyclic Markov processes.

• We are not very confident about our prediction of reward; perhaps we are only confident
about the near future steps.

• Humans show a preference for immediate reward.

• It is sometimes possible to use an undiscounted reward.

3 2. MDP

In an MDP, the reward is an action reward, not a state reward!

Ra
s = E [Rt+1 | St = s,At = a]

The Bellman Optimality Equation is non-linear, so we solve it using iterative methods.

4 3. Planning by Dynamic Programming

Planning (when you clearly know the MDP model and try to find an optimal policy)

Prediction: Given an MDP and a policy, you output the value function (policy evaluation).

Control: Given an MDP, you output the optimal value function and optimal policy (solving the
MDP).

• Policy Evaluation.

• Policy Iteration:

– Policy Evaluation (run for k steps until convergence).
– Policy Improvement:

3

http://incompleteideas.net/book/bookdraft2017nov5.pdf
http://incompleteideas.net/book/bookdraft2017nov5.pdf
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://github.com/dennybritz/reinforcement-learning

* If we iterate policy evaluation and improvement repeatedly, knowing the MDP, we
will eventually obtain the optimal policy (as proved). Thus, policy iteration solves
the MDP.

• Value Iteration:

1. Value update (one step of policy evaluation).
2. Policy improvement (one step greedy based on the updated value).

Iterating this also solves the MDP.

Asynchronous Dynamic Programming

• In-place dynamic programming (update the old value immediately with the new value, not
waiting for all states to update).

• Prioritized sweeping (based on the error in value iteration).

• Real-time dynamic programming (run the game in real-time).

5 4. Model-free Prediction

Model-free prediction is accomplished by sampling.

Monte-Carlo Learning

Every update in Monte-Carlo learning must span a full episode.

• First-Visit Monte-Carlo Policy Evaluation:
Run the agent following the policy; the first time that state s is visited in an episode,
perform the following calculations:

N(s)← N(s) + 1, S(s)← S(s) +Gt, V (s) =
S(s)

N(s)
,

and V (s)→ vπ as N(s)→∞.

• Every-Visit Monte-Carlo Policy Evaluation:
Run the agent following the policy, and each time state s is visited in an episode (even if in
a loop), update.
Incremental Mean:

µk =
1

k

k∑
j=1

xj

=
1

k

(
xk +

k−1∑
j=1

xj

)
=

1

k

(
xk + (k − 1)µk−1

)
= µk−1 +

1

k
(xk − µk−1)

Thus, by the incremental mean:

N(St)← N(St) + 1, V (St)← V (St) +
1

Nt
(Gt − V (St)).

In non-stationary problems, it may be useful to track a running mean, i.e.,

V (St)← V (St) + α(Gt − V (St)).

4

Temporal-Difference (TD) Learning

TD learning uses incomplete episodes and bootstraps the reward:

V (St)← V (St) + α(Gt − V (St))

and
V (st)← V (st) + α

(
Rt+1 + γV (St+1)− V (St)

)
.

The TD target is
Gt = Rt+1 + γV (St+1) (TD(0)).

The TD error is
δt = Rt+1 + γV (St+1)− V (St).

TD(λ) — Balancing between MC and TD

Let the TD target look n steps into the future. If n is very large and the episode is terminal, then it
is equivalent to Monte-Carlo.

G
(n)
t = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnV (St+n),

V (St)← V (St) + α
(
G

(n)
t − V (St)

)
.

Averaging n-step returns produces forward TD(λ):

Gλ
t = (1− λ)

∞∑
n=1

λn−1G
(n)
t ,

V (St)← V (St) + α
(
Gλ

t − V (St)
)
.

Eligibility Traces combine frequency and recency heuristics:

E0(s) = 0,

Et(s) = γλEt−1(s) + 1(St = s).

Backward TD(λ) (using eligibility traces):

δt = Rt+1 + γV (St+1)− V (St),

V (s)← V (s) + α δtEt(s).

If updates are done offline (i.e., in an episode using the old value), then the sum of forward TD(λ)
equals the sum of backward TD(λ):

T∑
t=1

α δtEt(s) =

T∑
t=1

α
(
Gλ

t − V (St)
)
1(St = s).

6 5. Model-free Control

An ϵ-greedy policy is used to add exploration to ensure that the policy both improves and explores
the environment.

On-policy Monte-Carlo Control

For every episode:

1. Policy Evaluation: Perform Monte-Carlo policy evaluation to estimate Q ≈ qπ .
2. Policy Improvement: Use an ϵ-greedy policy improvement based on Q(s, a).

Greedy in the limit with infinite exploration (GLIE) will eventually find the optimal solution.

6.0.1 GLIE Monte-Carlo Control

For the kth episode, set ϵ ← 1/k. As k increases, ϵk reduces to zero, and the optimal policy is
obtained.

5

On-policy TD Learning

Sarsa:
Q(S,A)← Q(S,A) + α

(
R+ γQ(S′, A′)−Q(S,A)

)
On-Policy Sarsa:

For every time-step:

• Policy Evaluation: Use Sarsa to estimate Q ≈ qπ .
• Policy Improvement: Apply ϵ-greedy policy improvement based on Q(s, a).

Forward n-step Sarsa leads to Sarsa(λ), analogous to TD(λ).

Eligibility Traces:
E0(s, a) = 0,

Et(s, a) = γλEt−1(s, a) + 1(St = s, At = a).

Backward Sarsa(λ) updates, for all (s, a) at each time-step:

δt = Rt+1 + γQ(St+1, At+1)−Q(St, At),

Q(s, a)← Q(s, a) + α δtEt(s, a).

Intuition: The current state-action pair’s reward and value influence all other state-action pairs, with
more influence on those that are more recent and frequent. Using only one-step Sarsa would update
only one state-action pair per reward, making learning slower.

Off-policy Learning

6.0.2 Importance Sampling

EX∼P [f(X)] =
∑
X

P (X)f(X)

=
∑
X

Q(X)
P (X)

Q(X)
f(X)

= EX∼Q

[
P (X)

Q(X)
f(X)

]
For off-policy TD, the update is:

V (st)← V (st) + α

(
π(At | St)

µ(At | St)

(
Rt+1 + γV (St+1)− V (st)

))
6.0.3 Q-learning

In Q-learning, the next action is chosen using the behavior policy At+1 ∼ µ(· | St), but we update
using a target policy A′ ∼ π(· | St):

Q(S,A)← Q(S,A) + α
(
Rt+1 + γQ(St+1, A

′)−Q(S,A)
)

No matter what action is actually taken next, we update Q according to our target policy. Thus, the
Q-values converge to those of the target policy π.

Off-policy Control with Q-learning: The target policy is greedy with respect to Q(s, a):

π(St+1) = argmax
a′

Q(St+1, a
′)

The behavior policy µ can be, for example, ϵ-greedy with respect to Q(s, a) or even a completely
random policy; it does not matter because the update is off-policy.

The Q-learning update becomes:

Q(S,A)← Q(S,A) + α
(
Rt+1 + γmax

a′
Q(S′, a′)−Q(S,A)

)
6

and Q-learning converges to the optimal action-value function Q(s, a)→ q∗(s, a).

Note: Q-learning can be used both off-policy and on-policy. For on-policy, if you use an ϵ-greedy
policy update, Sarsa is a good on-policy method; using Q-learning is also acceptable since ϵ-greedy
is similar to the max-Q policy.

7 6. Value Function Approximation

Before this lecture, we discussed tabular learning (maintaining a Q-table or value table).

7.1 Introduction

7.1.1 Why?

• The state space is large.
• The state space can be continuous.

7.1.2 Value Function Approximation

We approximate the value function and action-value function as:

v̂(s,w) ≈ vπ(s),
q̂(s, a,w) ≈ qπ(s, a).

7.1.3 Approximator Considerations

• Non-stationarity: State values change as the policy changes.
• Non-i.i.d.: Samples are generated according to the policy.

7.2 Incremental Methods

7.2.1 Basic SGD for Value Function Approximation

Using stochastic gradient descent (SGD) with feature vectors:

x(s) =

x1(s)...
xn(s)


Linear value function approximation:

v̂(s,w) = x(s)Tw =
n∑

j=1

xj(s)wj ,

J(w) = Eπ

[
(vπ(s)− v̂(s,w))2

]
.

The gradient update is:

∆w = α
(
vπ(s)− v̂(s,w)

)
∇wv̂(s,w) = α

(
vπ(s)− v̂(s,w)

)
x(s).

7.2.2 Table Lookup as a Special Case

A table lookup is a special case of linear approximation where the feature vector is:

x(s) =

1(s = s1)
...

1(s = sn)

 ,

and then

v̂(s,w) = x(s)Tw =

n∑
i=1

1(s = si)wi.

7

7.2.3 Incremental Prediction Algorithms

Supervision:

• For Monte-Carlo (MC), the target is the return Gt:

∆w = α
(
Gt − v̂(St,w)

)
∇wv̂(St,w).

• For TD(0), the target is the TD target Rt+1 + γv̂(St+1,w):

∆w = α
(
Rt+1 + γv̂(St+1,w)− v̂(St,w)

)
∇wv̂(St,w).

• Note: The TD target contains v̂(St+1,w), which depends on w, but we do not differentiate
through it (we treat it as a constant at each time step).

• For TD(λ), the target is the λ-return Gλ
t :

∆w = α
(
Gλ

t − v̂(St,w)
)
∇wv̂(St,w).

In the backward view of linear TD(λ):

δt = Rt+1 + γv̂(St+1,w)− v̂(St,w),

Et = γλEt−1 + x(St),

∆w = α δtEt.

8 7. Policy Gradient Methods

8.1 Introduction

8.1.1 Policy-based Reinforcement Learning

We directly parameterize the policy:

πθ(s, a) = P[a | s, θ].

Advantages:

• Better convergence properties.

• Effective in high-dimensional or continuous action spaces.

• Can learn stochastic policies.

Disadvantages:

• Convergence to a local rather than global optimum.

• Evaluating a policy is typically inefficient and high variance.

8.1.2 Policy Gradient

Let J(θ) be the policy objective function. To find a local maximum of the policy objective function,
we perform:

∆θ = α∇θJ(θ),

where

∇θJ(θ) =


∂J(θ)
∂θ1
...

∂J(θ)
∂θn

 .

Score Function Trick:
∇θπ(s, a) = πθ(s, a)∇θ log πθ(s, a).

The score function is ∇θ log πθ(s, a).

8

Policy Examples:

• Softmax policy for discrete actions.
• Gaussian policy for continuous action spaces.

For one-step MDPs, applying the score function trick:

J(θ) = Eπθ
[r] =

∑
s∈S

d(s)
∑
a∈A

πθ(s, a)Rs,a,

∇J(θ) =
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)∇θ log πθ(s, a)Rs,a

= Eπθ
[∇θ log πθ(s, a) r].

8.1.3 Policy Gradient Theorem

The policy gradient is given by:

∇θJ(θ) = Eπθ

[
∇θ log πθ(s, a)Q

πθ (s, a)
]
.

8.2 Monte-Carlo Policy Gradient (REINFORCE)

Using the return vt as an unbiased sample of Qπθ (st, at):

∆θt = α∇θ log πθ(st, at) vt, with vt = Gt = rt+1 + γrt+2 + γ2rt+3 + · · · .

Pseudo-code for REINFORCE:
1: function REINFORCE
2: Initialize θ arbitrarily
3: for each episode {s1, a1, r2, . . . , sT−1, aT−1, RT } ∼ πθ do
4: for t = 1 to T − 1 do
5: θ ← θ + α∇θ log πθ(st, at)vt
6: end for
7: end for
8: return θ
9: end function

REINFORCE suffers from a high variance problem since vt is estimated by sampling.

8.3 Actor-Critic Policy Gradient

8.3.1 Idea

Use a critic to estimate the action-value function:

Qw(s, a) ≈ Qπθ (s, a).

The actor-critic algorithm approximates the policy gradient as:

∇θJ(θ) ≈ Eπθ

[
∇θ log πθ(s, a)Qw(s, a)

]
,

and the update becomes:
∆θ = α∇θ log πθ(s, a)Qw(s, a).

8.3.2 Action-Value Actor-Critic

Using a linear function approximator Qw(s, a) = ϕ(s, a)Tw:

• The critic updates w using TD(0).
• The actor updates θ using the policy gradient.

Pseudo-code for QAC:

9

Algorithm 1 QAC
1: procedure QAC
2: Initialize state s and policy parameters θ
3: Sample action a ∼ πθ(s)
4: for each step do
5: Sample reward r = R(s, a)
6: Sample transition s′ ∼ P (s′ | s, a)
7: Sample action a′ ∼ πθ(s′)
8: δ = r + γQw(s

′, a′)−Qw(s, a)
9: θ = θ + α∇θ log πθ(s, a)Qw(s, a)

10: w = w + βδψ(s, a)
11: s← s′; a← a′

12: end for
13: end procedure

Observation: Value-based learning is a special case of actor-critic, since the greedy policy derived
fromQ (when the policy gradient step size is very large) will assign probability nearly 1 to the action
with maximum Q.

8.3.3 Reducing Variance using a Baseline

Subtracting a baseline function B(s) from the policy gradient can reduce variance without changing
its expectation:

Eπθ

[
∇θ log πθ(s, a)B(s)

]
=

∑
s∈S

dπθ (s)
∑
a

∇θπθ(s, a)B(s)

=
∑
s∈S

dπθ (s)B(s)∇θ

∑
a∈A

πθ(s, a)

=
∑
s∈S

dπθ (s)B(s)∇θ(1)

= 0.

A good baseline is the state value function: B(s) = V πθ (s). Then, we can define the advantage
function:

Aπθ (s, a) = Qπθ (s, a)− V πθ (s)

and the policy gradient becomes:

∇θJ(θ) = Eπθ

[
∇θ log πθ(s, a)A

πθ (s, a)
]
.

Estimating the Advantage Function:

• Use two networks to estimate Q and V separately (more complex).

• More commonly, use bootstrapping via the TD error:

δπθ = r + γV πθ (s′)− V πθ (s),

which is an unbiased estimate of the advantage:

Eπθ

[
δπθ | s, a

]
= Qπθ (s, a)− V πθ (s) = Aπθ (s, a).

Thus,
∇θJ(θ) = Eπθ

[
∇θ log πθ(s, a) δ

πθ
]
.

In practice, an approximate TD error for one step is:

δv = r + γVv(s
′)− Vv(s).

For the critic, we can use methods such as MC, TD(0), TD(λ), or TD(λ) with eligibility traces.

10

Examples:

• MC Policy Gradient:

∆θ = α (vt − Vv(st))∇θ log πθ(st, at)

• TD(0):
∆θ = α

(
r + γVv(st+1)− Vv(st)

)
∇θ log πθ(st, at)

• TD(λ):
∆θ = α

(
vλt + γVv(st+1)− Vv(st)

)
∇θ log πθ(st, at)

• TD(λ) with Eligibility Traces (backward view):

δt = rt+1 + γVv(st+1)− Vv(st),
et+1 = λ et +∇θ log πθ(s, a),

∆θ = α et.

For continuous action spaces, Gaussian policies are often used, but due to the noise inherent in
Gaussian distributions, it is sometimes preferable to use a deterministic policy (by selecting the
mean) to reduce noise and facilitate convergence. This leads to the Deterministic Policy Gradient
(DPG) algorithm.

8.3.4 Deterministic Policy Gradient (Off-policy)

For a deterministic policy:
at = µ(st | θµ),

with a Q-network parameterized by θQ and the state distribution under the behavior policy ρβ , the
critic loss is:

L(θQ) = Est∼ρβ , at∼β, rt∼E

[
(Q(st, at | θQ)− yt)2

]
,

yt = r(st, at) + γ Q
(
st+1, µ(st+1) | θQ

)
.

The actor’s objective is:

J(θµ) = Es∼ρβ

[
Q
(
s, µ(s | θµ) | θQ

)]
,

∇θµJ ≈ Es∼ρβ

[
∇aQ(s, a | θQ)

∣∣
a=µ(s)

∇θµµ(s | θµ)
]
.

To improve training stability, target networks are used for both the critic and actor, updated by a soft
update:

θQ
′
← τ θQ + (1− τ)θQ

′
,

θµ
′
← τ θµ + (1− τ)θµ

′
,

with τ set very small (e.g., τ = 0.001).

Additionally, noise is added to the deterministic action during exploration:

µ′(st) = µ(st | θµt) +Nt,

where Nt is noise (e.g., Ornstein-Uhlenbeck noise).

9 8. Integrating Learning and Planning

9.1 Introduction

Model-free RL:

• No model.
• Learn the value function (and/or policy) directly from experience.

Model-based RL:

11

• Learn a model from experience.
• Plan the value function (and/or policy) using the model.

We define a model asM = ⟨Pη,Rη⟩, where

St+1 ∼ Pη(st+1 | st, At), Rt+1 = Rη(Rt+1 | st, At).

Model learning from experience {S1, A1, R2, . . . , ST } is performed via supervised learning:

S1, A1 → R2, S2,

S2, A2 → R3, S3,

...
ST−1, AT−1 → RT , ST .

Here, learning s, a → r is a regression problem, and learning s, a → s′ is a density estimation
problem.

9.2 Planning with a Model

9.2.1 Sample-based Planning

1. Sample experience from the model.
2. Apply model-free RL methods to the samples, such as Monte-Carlo control, Sarsa, or Q-

learning.

The performance of model-based RL is limited to the optimal policy for the approximate MDP.

9.3 Integrated Architectures

Integrating learning and planning is exemplified by the Dyna framework:

• Learn a model from real experience.
• Learn and plan the value function (and/or policy) using both real and simulated experience.

9.4 Simulation-Based Search

• Forward Search: Select the best action by lookahead.
• Build a search tree with the current state st at the root.
• Solve the sub-MDP starting from the current state.

9.4.1 Simulation-Based Search Process

1. Simulate episodes of experience from the current state using the model.
2. Apply model-free RL to the simulated episodes (e.g., Monte-Carlo search, TD search).

9.4.2 Sample Monte-Carlo Search

• Given a modelMv and a simulation policy π:
1. For each action a ∈ A, simulate K episodes from the current (real) state st:

{st, a, Rk
t+1, S

k
t+1, A

k
t+1, . . . , s

k
T }Kk=1 ∼Mv, π.

2. Evaluate the action by computing the mean return:

Q(st, a) =
1

K

K∑
k=1

Gt
P→ qπ(st, a).

• Select the action with maximum estimated value:

at = argmax
a∈A

Q(st, a).

12

9.4.3 Monte-Carlo Tree Search (MCTS)

• Given a model Mv , simulate K episodes from the current state st using the simulation
policy π:

{st, Ak
t , R

k
t+1, S

k
t+1, A

k
t+1, . . . , s

k
T }Kk=1 ∼Mv, π.

• Build a search tree of visited states and actions.
• Evaluate states Q(s, a) by the mean return of episodes passing through s, a:

Q(st, a) =
1

N(s, a)

K∑
k=1

T∑
u=t

1(su, Au = (s, a))Gu
P→ qπ(st, a).

• After search is finished, select the real action with maximum value:

at = argmax
a∈A

Q(st, a).

Each simulation consists of two phases:

• Tree Policy (improves): Pick actions to maximize Q(s, a).
• Default Policy (fixed): Pick actions randomly.

Note: Q-values are updated on the entire subtree, not only at the current state. After each search
episode, the policy is improved based on the updated Q-values and a new search begins. With
progress, the search exploits promising directions while still exploring others (e.g., via MCTS with
Upper Confidence Bounds as in AlphaZero).

Temporal-Difference Search: For example, update using Sarsa:

∆Q(S,A) = α
(
R+ γQ(S′, A′)−Q(S,A)

)
.

One may also use function approximation for simulated Q-values.

Dyna-2:

• Long-term memory (real experience): Use TD learning.
• Short-term memory (working memory): Use simulated experience with TD search &

TD learning.

10 9. Exploration and Exploitation

10.1 Ways to Explore

• Random Exploration:
– Use Gaussian noise in continuous action spaces.
– ϵ-greedy: choose a random action with probability ϵ.
– Softmax: select an action based on the softmax of the policy distribution.

• Optimism in the Face of Uncertainty: Prefer to explore state/actions with highest uncer-
tainty.

– Optimistic Initialization.
– UCB (Upper Confidence Bounds).
– Thompson Sampling.

• Information State Space:
– Gittins indices.
– Bayes-adaptive MDPs.

State-action exploration versus parameter exploration.

13

10.2 Multi-arm Bandit

Total Regret:

Lt = E

[
t∑

τ=1

(
V ∗ −Q(aτ)

)]
=

∑
a∈A

E[Nt(a)]
(
V ∗ −Q(a)

)
=

∑
a∈A

E[Nt(a)]∆a.

Optimistic Initialization:

• Initialize Q(a) to a high value.
• Then act greedily.
• This leads to linear regret.

ϵ-greedy:

• Also leads to linear regret.
• Decaying ϵ-greedy (with properly tuned decay) can yield sub-linear regret (often logarith-

mic in t).

The regret lower bound (logarithmic bound):

lim
t→∞

Lt ≥ log t
∑

a:∆a>0

∆a

KL
(
Ra ∥Ra∗

) .
10.2.1 Optimism in the Face of Uncertainty: Upper Confidence Bounds (UCB)

• Estimate an upper confidence Ut(a) for each action value such that with high probability,

Q(a) ≤ Q̂t(a) + Ut(a).

• The upper confidence depends on the number of times N(s) has been sampled.
• Select the action maximizing the upper confidence bound:

At = argmax
a∈A

[
Q(st, a) + Ut(a)

]
.

Theorem (Hoeffding’s Inequality):

Let x1, . . . , xt be i.i.d. random variables in [0, 1], and let Xt =
1
t

∑t
τ=1 xτ . Then,

P
[
E[X] > Xt + u

]
≤ e−2tu2

.

Applying Hoeffding’s inequality to the rewards of the bandit for a given action a:

P
[
Q(a) > Q̂(a) + Ut(a)

]
≤ e−2Nt(a)Ut(a)

2

.

If we set a probability p such that this holds:

e−2Nt(a)Ut(a)
2

= p,

then solving for Ut(a) gives:

Ut(a) =

√
− log p

2Nt(a)
.

If we let p = t−4, then:

Ut(a) =

√
2 log t

Nt(a)
.

This ensures we select the optimal action as t→∞.

14

UCB1 Algorithm:

At = argmax
a∈A

[
Q(st, a) +

√
2 log t

Nt(a)

]
.

The UCB algorithm achieves logarithmic asymptotic total regret:

lim
t→∞

Lt ≤ 8 log t
∑

a:∆>0

∆a.

Bayesian Bandits: Probability matching (Thompson Sampling) is optimal for the one-armed ban-
dit, though it may not be as effective in MDPs.

10.3 Solving Information State Space Bandits — MDP

Define an MDP on the information state space.

10.4 MDP Exploration with UCB

In an MDP, UCB can be generalized as:

At = argmax
a∈A

[
Q(st, a) + Ut(st, a)

]
.

Another algorithm is the R-Max algorithm.

15

	Background
	1. Introduction
	2. MDP
	3. Planning by Dynamic Programming
	4. Model-free Prediction
	5. Model-free Control
	GLIE Monte-Carlo Control
	Importance Sampling
	Q-learning

	6. Value Function Approximation
	Introduction
	Why?
	Value Function Approximation
	Approximator Considerations

	Incremental Methods
	Basic SGD for Value Function Approximation
	Table Lookup as a Special Case
	Incremental Prediction Algorithms

	7. Policy Gradient Methods
	Introduction
	Policy-based Reinforcement Learning
	Policy Gradient
	Policy Gradient Theorem

	Monte-Carlo Policy Gradient (REINFORCE)
	Actor-Critic Policy Gradient
	Idea
	Action-Value Actor-Critic
	Reducing Variance using a Baseline
	Deterministic Policy Gradient (Off-policy)

	8. Integrating Learning and Planning
	Introduction
	Planning with a Model
	Sample-based Planning

	Integrated Architectures
	Simulation-Based Search
	Simulation-Based Search Process
	Sample Monte-Carlo Search
	Monte-Carlo Tree Search (MCTS)

	9. Exploration and Exploitation
	Ways to Explore
	Multi-arm Bandit
	Optimism in the Face of Uncertainty: Upper Confidence Bounds (UCB)

	Solving Information State Space Bandits — MDP
	MDP Exploration with UCB

