Deep Reinforcement Learning Basic

Contents

1 Basid
|II.1 Markov Decision Process ((MDP)|

Dongda Li
d1i160@syr.edu

Policy|

)

[3

Tabular Learning

BT WhyUse QBUINOIVT .« o o o oovee e e e e

3.2 The Value Iteration in an Environment withaloop|

3.3 Problems in Q-learning|

N
N
e

13.5.1 Q-valueTable|.

4.3 Basic Tricks in DeepMind 2015 Paper|

4.4 Double DOQN| .
4.5 Noisy Networks|

S LW W W W W W W

S Y Y Y > T T~ SN SN N

AN L L e

4.6 Prioritized Replay Buffery o o o oo

BE7 DuelingDON] e
K8 Categorical DON|

@)}

[> Policy Gradients|
5.1 REINFORCE]

N N 9 NN &

[6 Deep Reinforcement Learning in Natural Language Processing (NLP)|
6.1 Basic Conceptsin NLP|
62 RNNS| o
621 LSTMI.
6.3 Word Embedding (word2vec)|.
6.4 Encoder-Decoder (Seg2Seq)| o
6.5 RLmSeg2Seq|

O o0 00 0 N 3 3

(7 Continuous Action Space] 9

8 DDPG 9

9 Model-based RL)

102 Softmaxl 10
103 Tanhl o o 10
104 Rel Ul oo oo 10

11 Reference] 10

1 Basic

1.1 Markov Decision Process (MDP)

"J Agent Il

state reward

RH—] (.
S| Environment

The MDP consists of the following components: environment, state, observation, reward, action,
and agent.

action

1.2 Policy

m:8%xA—[0,1] (Equation ??)

w(a|s)=Plag=a| s =)

1.3 State-value Function

oo
R=> 4'ry (Equation ??)
t=0

oo

Vz(s) = E[R] = E{Z’ytn ‘ S0 = s]
t=0

where 7 is the reward at step ¢ and -y € [0, 1] is the discount rate.

1.4 Value Function

V™(s) = E[R | s,n] (Equation ??)
V*(s) = max V7 (s)

1.5 Action-Value Function
Q" (s,a) = E[R| s,a,n| (Equation ??)
Q*(s) =max Q7 (s,a)

1.6 Method Classification

* Model-based: Use previous observations to predict following rewards and observations.
* Model-free: Train directly by experience.

* Policy-based: Directly approximate the policy of the agent.

* Value-based: The agent calculates the value of every possible action.

» Off-policy: The ability of the method to learn from old historical data.

* On-policy: Requires fresh data obtained from the environment.

1.7 Policy-based Method
This method is treated much like a classification problem:

* NN Input: Observation.
* NN Output: Distribution of actions.

» Agent: Randomly choose an action based on the action distribution (policy).

2 Cross-Entropy Method

2.1 Steps

1. Play N episodes using our current model and environment.

2. Calculate the total reward for every episode and decide on a reward boundary (usually a
percentile, e.g. 50th or 70th).

3. Discard all episodes with a reward below the boundary.

4. Train on the remaining “elite” episodes using observations as input and the corresponding
actions as the desired output.

5. Repeat from step 1 until the result is satisfactory.

Use the cross-entropy loss function as the loss function.

Drawback: Cross-entropy methods make it difficult to understand which step or state is good or
not, as they only indicate that an entire episode is better overall.

3 Tabular Learning

3.1 Why Use Q but Not V?

If T know the value V() of the current state, I know whether the state is good or not, but I do not
know how to choose the next action. Even if I know the V' of all subsequent states, I cannot directly
determine the required action. Therefore, we decide the action based on Q.

If T know the Q-values of all available actions, we simply choose the action with the maximum Q.
According to the relationship between () and V/, this action will also lead to the maximum V.

3.2 The Value Iteration in an Environment with a Loop

If there is no discount factor v (i.e., 7 = 1) and the environment has a loop, the value of the state
becomes infinite.

3.3 Problems in Q-learning

* The state space may be non-discrete.
» The state space may be very large.

* The probability and reward matrices P(s’,r | s,a) may be unknown.

3.4 Value Iteration

3.4.1 Reward Table

* Index: “source state” + “action” + “target state”.

e Value: Reward.

3.4.2 Transition Table

¢ Index: “state” + “action”.

e Value: A table where the index is the next state and the value is the count.

3.4.3 Value Table
¢ Index: State.

¢ Value: Value of the state.

3.4.4 Steps
1. Use random actions to build the reward and transition tables.
2. Perform a value iteration loop over all states.

3. Play several full episodes to choose the best action using the updated value table while
updating the reward and transition tables with new data.

Problem of Separating Training and Testing: When training and testing are separated, if the task
is difficult, random actions may fail to reach the final state, resulting in missing states that are near
the final step. Therefore, training and testing may need to be conducted simultaneously, with some
exploitation added during testing.

3.5 Q-learning

Different from value iteration, Q-learning updates a Q-value table:

3.5.1 Q-value Table
¢ Index: “state” + “action”.
¢ Value: The action value (Q-value).

Here:
V(s) = argmax Q(s, a)

4 Deep Q-learning

4.1 DQN
e Input: State.
* Output: Values for all actions (for n actions) given the input state.

* Classification: Off-policy, value-based, and model-free.

4.2 Problems

 Balancing exploration and exploitation.

* Data is not independent and identically distributed (i.i.d.), which is required for neural
network training.

* The MDP might be partially observable (POMDP).

4.3 Basic Tricks in DeepMind 2015 Paper
* Use e-greedy to handle exploration and exploitation.
» Use a replay buffer and target network to enforce i.i.d.-like properties:

— The replay buffer randomly selects experiences.
— The target network isolates the influence of nearby Q-values during training.

¢ Use several observations as the state to handle POMDPs.

4.4 Double DQN

Idea: Choose actions for the next state using the trained network but use Q-values from the target
network.

4.5 Noisy Networks

Idea: Add noise to the weights of fully-connected layers of the network and adjust the noise param-
eters during training via back-propagation. This replaces e-greedy and improves performance.

4.6 Prioritized Replay Buffer

Idea: Improve sample efficiency by prioritizing experiences in the replay buffer according to the
training loss.

Trick: Use loss weights to compensate for the distribution bias introduced by prioritization.

4.7 Dueling DQN

Idea: Decompose the Q-value Q(s, a) into the state value V'(s) and the advantage A(s, a).

Trick: Force the mean value of the advantage for any state to be zero.

4.8 Categorical DQN

Idea: Train the probability distribution of the action Q-values rather than a single Q-value.
Tricks:
» Use a generic parametric distribution, i.e., a fixed number of “atoms” placed regularly over
a value range.
 Use the Kullback-Leibler (KL) divergence as the loss.

5 Policy Gradients

5.1 REINFORCE
5.1.1 Idea

Policy Gradient:
AJ =~ E|Q(s,a) Alogm(a|s)| (Equation ??)
Loss function:
loss = —Q(s,a) logm(a | s) (Equation ??)

Increase the probability of actions that yield high total reward and decrease the probability of actions
that yield low total reward.

m(a|s) >0, —logm(a]|s)>0 (Equation??)

5.1.2 Problems
» Requires full episodes to obtain () from completed episodes.
 High variance gradients; long episodes tend to have larger) than short ones.
» Convergence to locally optimal policies due to lack of exploration.

» Samples are not i.i.d.

5.1.3 Basic Tricks
* Use Actor-Critic methods to learn Q).
* Subtract a baseline from @ to reduce variance.
* Add an entropy term to the loss to encourage exploration.

 Use parallel environments to reduce sample correlation.

5.2 Actor-Critic

N-1
Q(s,a) = Y A'ri+7"V(sn)
=0
Lossyalue = MSE(V(.S)7 Q(s, a)) (Equation ??)
Q(s,a) = A(s,a) + V(s)
Losspolicy = —A(s,a)logm(a | s) (Equation ??)

Here, A(s,a) is the advantage. We train the critic using Equation ?? and the policy using Equation
??. This approach is known as Advantage Actor-Critic (A2C).

Idea: The gradient’s magnitude is proportional to the advantage A(s,a). A separate network
estimates V (s) for each observation.

5.2.1 Implementation

In practice, the policy and value networks often share a common body and have separate output
heads, which improves efficiency and convergence.

5.2.2 Tricks

* Add an entropy bonus to the loss:

Henropy = — Z mlogm, LosSenropy = [Z mo(s;) log mg(s;) (Equation ??)

* Use multiple environments to improve stability.

* Apply gradient clipping to prevent large updates.

Total Loss Function:
Loss = Losspolicy + LoSSyaie + L0SSentropy -

5.2.3 Asynchronous Advantage Actor-Critic (A3C)
A3C uses parallel environments to speed up training. (Refer to open source implementations for

further details.)

6 Deep Reinforcement Learning in Natural Language Processing (NLP)

6.1 Basic Concepts in NLP

¢ Recurrent Neural Networks (RNNs).

* Word embeddings.

e The seq2seq model.

¢ Recurrent Models of Visual Attention (NIPS 2014).

SeeCS224d for more details in NLP.

6.2 RNNs

An RNN is a network that processes sequences by maintaining a hidden state (a vector) that is
updated at each time step.

http://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention
http://cs224d.stanford.edu

Unfolded RNN:

RNNSs produce different outputs for the same input in different contexts and are standard building
blocks for processing variable-length sequences.

6.2.1 LSTM

& ©

LSTM unit

tanh ‘
O ‘—“l Cerr hery | — -
|

.| Cihes
_J

tanh o]

|

© ® @

6.3 Word Embedding (word2vec)
Word embeddings map words or phrases to vectors of real numbers by embedding a one-hot vector

(with one dimension per word) into a lower-dimensional continuous space. These embeddings are
useful for tasks such as syntactic parsing and sentiment analysis. See Word Embedding| for details.

6.4 Encoder-Decoder (Seq2Seq)

<eos>

(I o B L]

—s
X— |—s=<

S —3
<— |—N

An encoder RNN processes an input sequence into a fixed-length representation, which is then
passed to a decoder RNN that produces an output sequence. This framework is widely used in
machine translation.

Modes:

* Teacher-forcing mode: The decoder input is the target reference.

* Curriculum learning mode: The decoder input is the previous output of the decoder.

Attention Mechanism: Improves the performance of seq2seq models by allowing the decoder to
focus on different parts of the input sequence. For example:

https://en.wikipedia.org/wiki/Word_embedding

output
FFN + Softmax

) |5

Efg J
Seq2Seq Attention ’(ll H

Attenti orI

EELL:
)
10000000

Inputs

(The attention mechanism figure is from Zhihu.)

6.5 RL in Seq2Seq

» Sample from the probability distribution rather than using an average result.

* When the score is not differentiable, policy gradients can be used with the score as a scaling
factor.

* Stochasticity is introduced in the decoding process when the dataset is limited.

* The argmax score can be used as a baseline for Q-values.

7 Continuous Action Space

8 DDPG

TBC.

9 Model-based RL

9.1 What is Model-based?

Consider that our MDP is a model that takes an input state s and action a and outputs a reward r
and new state s'; i.e., (r,s’) = M(s,a). Sometimes we do not know the exact model of the MDP,
but we can learn it from experience. The model is used for search and planning: search can
generate additional simulated experience, and planning uses simulated experience to update our
policy and value function. Planning methods can be similar to those used in model-free RL.

Diagram:

I
I | planning
I I

directly RL| real environment simulation
| | B
| | interact | searching
I v I
——————————————————— experiences ------—-----------————-> Model

Why use model-based RL? We want to obtain more experience through simulation and thereby
speed up learning.

https://zhuanlan.zhihu.com/p/40920384

9.2 How to Search?
To generate additional experience, we can perform search methods such as:

¢ Rollout search.

e Monte Carlo Tree Search (MCTS).
10 NN Functions

10.1 Sigmoid

Description: It transforms a value input to the range (0, 1).

10.2 Softmax

Description: It transforms a K -dimensional vector input to a probability distribution over K
classes (each entry in (0, 1) and summing to 1).

10.3 Tanh
Description: It transforms an input value to the range (—1, 1).
et — e
= tanh(z) = ——
f(@) = tanh(a) = S——
10.4 ReLU

f(z) = max(0, z)

11 Reference

* Maxim Lapan, Deep Reinforcement Learning Hands-On, 2018.

e Mnih, V., Kavukcuoglu, K., Silver, D., et al. Human-level control through deep reinforce-
ment learning. Nature, 2015, 518(7540):529.

e Mnih, V., Heess, N., Graves, A. Recurrent models of visual attention. Advances in Neural
Information Processing Systems, 2014:2204-2212.

» Paszke, Adam, Gross, et al. Automatic Differentiation in PyTorch, 2017.

10

	Basic
	Markov Decision Process (MDP)
	Policy
	State-value Function
	Value Function
	Action-Value Function
	Method Classification
	Policy-based Method

	Cross-Entropy Method
	Steps

	Tabular Learning
	Why Use Q but Not V?
	The Value Iteration in an Environment with a Loop
	Problems in Q-learning
	Value Iteration
	Reward Table
	Transition Table
	Value Table
	Steps

	Q-learning
	Q-value Table

	Deep Q-learning
	DQN
	Problems
	Basic Tricks in DeepMind 2015 Paper
	Double DQN
	Noisy Networks
	Prioritized Replay Buffer
	Dueling DQN
	Categorical DQN

	Policy Gradients
	REINFORCE
	Idea
	Problems
	Basic Tricks

	Actor-Critic
	Implementation
	Tricks
	Asynchronous Advantage Actor-Critic (A3C)

	Deep Reinforcement Learning in Natural Language Processing (NLP)
	Basic Concepts in NLP
	RNNs
	LSTM

	Word Embedding (word2vec)
	Encoder-Decoder (Seq2Seq)
	RL in Seq2Seq

	Continuous Action Space
	DDPG
	Model-based RL
	What is Model-based?
	How to Search?

	NN Functions
	Sigmoid
	Softmax
	Tanh
	ReLU

	Reference

